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Abstract—Using the recently developed imbricate non-local continuum approach. zones of strain
softening {distributed microcracking) which have a finite size can be modeled. A differential approxi-
mation of the averaging integrals for the non-focal continuum makes it possible to obtain exact
analytical solutions for uniaxial softening in a bar or for flexural softening in a beam. The differential
equations of the problem along with the essential and natural boundary conditions and the con-
ditions at the interface between the softening and non-softening regions are derived by a variational
procedure based on the principle of virtual work. The failure due to strain softening is analyzed as
a stability problem. In contrast to the blunt crack band model, the size of the strain-softening region
is treated as an unknown to be solved by stability analysis. Numerical results show that the size of
the strain-softening region is approximately constant, and so is the energy dissipated due to failure.
Ductility diagrams, giving the strain at failure as a function of beam size and support stitfness are
also caleulated and are found to be quite similar to those obtained previously by local analysis with
an assumed size of the softening region. These conclusions lend further support to the use of a blunt
crack bund model for localized cracking.

INTRODUCTION

Failure of brittle heterogencous materials such as concrete or rock usually involves large
zones of distributed cracking. On the mucroscale, the material in these zones exhibits strain
softening, i.c. a gradual decrease of stress at increasing strain. The mathematical modeling
of this phenomenon has recently gencerated extensive debate[1-3]. Problems arise with the
strain-softening concept when a rate-independent local continuum is considered. For that
case, it may be shown that strain-softening zones of finite size are in general unstable, and
the cracking or strain soflening may localize to a zone of zero volume, ie. a surface, or a
line, or a point. Nevertheless, large zones of cracking are often observed experimentally,

A simple way to describe cracking zones of finite size in a finite element code is to
prescribe the minimum size of the strain-softening finite elements. This approach, proposed
on the basis of stability analysis in 1974[4]. has led to the formulation of the blunt crack
band model[4-7], which has been shown to be in agreement with the fracture test data on
concrete or rock available in the literature. An alternative method to obtain agreement with
these fracture data is to lump the cracking into a line and postulate a stress-displacement
refation at the tip of a line crack[8]. in & manner which is similar to the original models for the
cohesive zone in ductile fracturc[9, 10]. This alternative approach, however. is incapable of
handling cracking situations in which the cracking docs not localize to a zone of minimum
possible width, as determined by the aggregate size or grain size, but remains distributed
over much larger arcas. Such situations happen, e.g. in reinforced concrete when the steel
ratio is sufficiently large, orin dynamics where inertial forces prevent immediate localization,
and also in certain situations where a compression zone immediately ahead of the fracture
front provides a restraint which prevents the localization of cracking, as has been dem-
onstrated for certain thermal stress problems.

A rigorous formulation for distributed cracking. which has the blunt crack band model
as its special case and can describe strain-softening zones of finite size, was recently proposed
in Ref. [6]. Like the classical non-local continuum theory[11-15], the macroscopic stress,
called broad-range stress, is considered to be a function of the mean strain over a certain
representative volume the size of which (the characteristic length) is a property of the
material. Unlike the classical non-local continuum theory, however, the averaging operator
that defines the mean strain must be applied once more to the broad-range stress in
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order to obtain the stress to be substituted into the differential equation of equilibrium.
Furthermore, this non-local continuum must be coupled in parallel (i.e. overlaid) with a
local continuum in which the (local) stress at a point depends only on the strain at the same
point. This overlay is necessary to prevent spurious zero-energy periodic deformation
modes. The continuum may be considered as the limiting case of a system of imbricated
(regularly overlapping) finite elements the size of which is kept constant and equal to the
characteristic length of the medium while the mesh is refined. Therefore. this new type of
non-local continuum is called imbricate.

The imbricate non-local continuum has so far been used only in numerical finite
element studies. Various problems of one-dimensional planar, cylindrical. and spherical
waves as well as the fracture process in a two-dimensional rectangular specimen have
been solved for strain-softening materials. However. no exact analytical solutions for the
imbricate non-local continuum have yet been obtained. Development of such solutions is
the objective of this work. Such solutions are useful for verification and calibration of
imbricate non-local finite element programs. They can also bring to light some simple basic
properties of the imbricate non-local continuum, e.g. the variation of the size of the strain-
softening domain and the energy dissipated in it as a function of the structure size. support
stiffness, and the softening slope of the macroscopic stress—strain diagram. We will
demonstrate such solutions for one-dimensional problems of axial deformation as well as
bending.

Before cmbarking on our analysis, it is proper to mention that some rescarchers at
present belicve that continuum models with strain softening, even in the recent non-local
form, do not adequately describe the physical reality. Some of them assert that the only
realistic approach is either micromechanics analysis introducing some specitic form of
material inhomogeneitics or representation of a damage zone through a softening stress -
displucement relation for an isolated equivalent crack. Others propose the use of homo-
genization theory, although questions then arise whether homogenization is physically
realistic if discontinuitics can develop within the softening zone or on its boundary. Inter-
esting though such proposals and criticisms may be, they have not so far led to any usable
mathematical model for structural analysis. Within the limited scope of this paper, these
divergent views cannot be analyzed adequately. For a more detailed discussion sce, e.g.
Ret, [1] which gives an extensive bibliography.

Itis proper to point out also that another formulation of a non-local continuum for
strain softening has been found after the completion of the present analysis[16-18]. This
formulation in which the clastic strains are considered to be local and the non-local
treatment is applicd only to those internal variables which causce strain softening, has been
found to perform very well in finite element analysis and has already been successfully
applied to a finite clement system with several thousand nodal displacements{16] (c.g.
problems ol stability of the excavation of a tunnel in a grouted strain-softening soil). The
advantages of this alternatve formulation are that: (1) it requires no element imbrication
and thus is simpler to program, (2) no extra boundary ¢onditions of higher order (such as
eqns (13) -(13)) are needed. and (3) there exist no periodic zero-energy instability modes,
making an overlay with a local elastic continuum unnecessary. This alternative formulation,
however, does not apparently permit explicit analytical solutions such as presented in this
paper. Also, the operators in it are not symmetric, while those in the present formulation
are,

DIFFERENTIAL APPROXIMATION FOR A NON-LOCAL CONTINUUM BAR

We consider a bar of uniform cross section with a unit arca (Fig. 1(c)). The bar is
initially in equilibrium at initial total stress S and initial axial displacements «”(x) which
depend on the axial coordinate x. We consider increments u(x) of the axial displacement
from this initial state. In the imbricate non-local continuum, we must distinguish two kinds
of incremental stresses: the local stress © and the broad-range stress ¢, which may be
expressed as
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Fig. 1. Stress strain and moment curvature diagrams, and notations for a uniaxially loaded bar.
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in which £, £ arc the local and non-local incremental clastic moduli, du/dx = & the tocal
strain increments, £ the mean (or non-local) strain increment, x(s) the given empirical
weighting tunction, and / the characteristic length. over which the strain averaging is carried
oult.

The integral definttion of the mean strain in eqn (1) makes it diflicult to obtain
analytical solutions. 1t also requires modification at points closer to the ends of the bar
than //2. Therefore, we will use a differential approximation (2), which is obtained by
expanding u(x) into a Taylor series, integrating and truncating the resulting series after the
second term; this leads to

. (! P d* \ du 0

L= LT N g -

dx-/ dx )

in which / is the length constant (equal to // /24 i x = 1 ; see Ref. [5]). It may be shown

by variational calculus (2) that the differential equation of equilibrium associated with egn
{2y must have the form dS/dx = 0 in which S is the total stress (i.c. the actual stress),
defined as

S=({l=¢)d+ct., 6= (1 +4° ii;),, 3)
dx-

where  is the mean stress and ¢ the empirical coetlicient characterizing the fraction of the
local response. For ¢ = 1 all response is local, and for ¢ = 0 all response would be nonlocal.
Howuever, as shown before eqn (2). the case ¢ = 0 is unstable (for a uniform weighting
function z(s)). permitting periodic zero energy deformation modes. Stability requires that
¢ > 0, although for practical numerical reasons the values of ¢ less than about 0.1 should
be avoided in finite element analysis because they produce excessive numerical noise.

The material of the bar is assumed to obey a rate-independent stress-strain relation
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which exhibits a post-peak strain softening (Fig. 1(a)). As shown before eqns (1) and (2),
the strain softening is admissible only for the non-local part of material behavior, i.e. for
the dependence of the broad-range stress ¢ on the mean strain & The local behavior may
be elastic (Fig. l(b)) or elastic-plastic hardening. but not softening. For the non-local
inelastic behavior, we must distinguish the incremental elastic moduli for further loading
(increasing strain), E = E,. and for unloading (decreasing strain), E = E,. For the pre-
peak. hardening regime. E, > 0. while for the post-peak, softening regime, E, < 0. Always
E, > 0. For the local behavior, £ > 0 alwayvs.

We consider only static deformations. in which the bar must be in equilibrium, and so
S = const. along the bar. When the broad-range stress is in the pre-peak hardening regime,
only one strain value corresponds to a given stress value, and so the strain distribution
must be uniform. For the post-peak softening behavior, however. the strain does not have
to be uniform because more than one strain value is associated with a given stress value.
Accordingly. we assume that a centrally located segment of length 2/ undergoes further
loading, and the remaining segments of lengths L —/ undergo unloading from the same
initial state characterized by stresses t”, ¢". §” and strains ¢’ = £” (Fig. 1(c)). (It may be
shown that strain softening always localizes into a single segment rather than several
segments.) To simulate the behavior of a specimen in a testing machine, we consider the
specimen to be loaded through springs of spring constants C attached at the ends.

Duc to symmetry. we analyze only one-half of the bar of length L, loaded by one
spring. The objective of our analysis is to check successive post-peak states in the strain-
softening regime and determine the initial strain £° at which the strain distribution first
becomes unstable, with strain localization into a segment of length /1. This length is also
unknown and is to be solved. The bar is loaded at the end of the spring in a displacement
controlled fashion, and the strain increments ¢ are assumed to happen so rapidly that the
displacement at the end of the spring is zero, i.c. no work is done by the external loads or
prescribed displacements during the incremental deformation.

The essential and natural boundary conditions were determined before[2], but the
interface conditions and the conditions for elastic boundary restraint or symmetry were
not. To obtain these conditions, we consider the virtual work of the incremental stresses in
the system

I3 I3
oW = J (1l —c)6dé d.\’+J cte de+0W, =0
5] 0
oW, = Cluy—us(L)] [dtey —du(L)] 4)
in which w,(L) is the displacement at the end x = L of the bar, and «; is the displacement
at the end of the attached spring. The stiffness C of the spring is assumed to be constant.

Distinguishing the stresses and displacements in the loading and unloading scgments by
subscripts | and 2, and substituting eqn (2) for & with ¢ = du/dx = «’, we obtain

I

13
oW = j [(1 =)o (Su', + 4°6u7)] dA\‘+J‘ [(1 =)o (du's + 273uY)] dx
i}

I
h I
+J T, 0u d.\‘+j ct0uy dy+ 04, =0 (5)
[}} h

in which the primes are used to denote the derivatives with respect to x. Through successive
integrations by parts we may transform egn (3) as follows:

oW = [(1 =)o (Su, + i0u}) +ct,ou, ]

1
—J (1 =)o (Suy + 27017) + 1701, ] dx+[(1 — )2 (Ous + A70u) + ct:0u,]F
0

L
—f [(1 =)o s (Sur 42580 + et'idu,) dx+6 W, = (6)
h
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W = [[(1—c) (o, + 46+ et )ou ]o+ (1 —c)i*(0,0u] — 6’ 0u?)]h

h
_.f (M=o (o, +4°67) +ct\] duy dx+[[(1 —c) (@.+4i70%) +c1,] dus)k
a

L
+(1 =c)i[o.0us =3 0ouslE — ( [(1—=c)(o:+ A6 +ct] dus dx+0W, =0 (7)
h

~

h
oW = [S,0u, ]t +[(1 —0) A" (a,0u] —a',0u) )]f')-—f S0u, dx

0

L
+[S.du:]k + (1 —c)/'.:(agéu’_i—a}ézt})]ﬁ—J Shous dx+0W, =0. (8)
h

The condition that this variational equation must be satisfied for any kinematically admis-
sible variations du,(x) and du,(x) vields:

ditferential equilibrium equations

1S . d: Zd 2 d 2
=l ~(')E,(I+}.' ) L eESH <0

dv'/ dy? dx?
9 o1+ ) 9 gt Lo, 9)
dy Nt Cdvt) der T g T (
boundary conditions of symmetry at x =0
Su, =0, o ou, =0, o, 0u; =0; (10)
interface conditions at x =/
S 0u, = 8,0us, a\du) = 6,0us, a,0u] = 6.0us; (1
boundary conditions at x = L
o0y = a2duy, (S, 4+ Cluy —usy (L))} duy(L) = 0. (12)
The toregoing conditions imply both the natural (static) and the essentinl (kinematic)

boundary or interface conditions, We must now choose between the two and we do so as
follows :

forv =20
u, =0, u; =0, o,=0(ru¥=0); (13)

forx =1
U, =u,, Wy =u-, u,=us, S§,=8, a =0, 0gy=0"; (14)

forx =L
p= [y —uy(L)). 67 =0, ui=0. (15)

Equations (13) give the boundary conditions which satisfy the requirements of symmetry
of the displacement field with regard to the middle of the bar and the condition that strain
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¢ should be nonzero at x = 0. Note that the conditions ¢} = 0 and «] = 0 at x = 0 imply
u" = 0. which could replace the boundary condition ¢} = 0 at x = 0.

Equations (14) and eqns (15)- and (15), can also be derived physically if one considers
the imbricate microstructure as described in Ref. [4]. At each point of the bar there are
infinitely many infinitely thin elements of length / overlapping each other (Fig. 1(d}). and
the end of the buar the imbricated elements protruding bevond x = L are chopped off and
anchored at x = L (Fig. 1(e)). The corresponding difference equations agree in the limit
with eqns (14) and (15).

The differential equations in eqns (9) for segments 0 < x < ~and & < x < L are of the
sixth order and, theretore, their general solution involves 12 arbitrary constants. This agrees
with the number of boundary and interfuce conditions in egns (13) (15). which is also 12.

SOLUTION OF DIFFERENTIAL EQUATIONS

Since ¢, E. E, and E, are constants within the unloading and softening segments, and
E, < 0 with the other constants being positive, the general solution of eqns (9) may be
written as

u(x) = B, sin x,x+ B, sin fiix+ B, cos a,x+ 8, cos fiix+ Bsx+ 8B, (16)
and

1,(x) = C, cosh 2,x sin fi,v+C, sinh 2,x cos fiov+ 4 cosh x.v cos fioy

+C,sinh a,x sin v+ Cov+C, (17)
2, =4 AN Bi=4 =)' A = (eE) [~ =0k Uy

and

y

=4 A =D Be=4 A+ ) =M+ A A= cll( -0k,
(19)

Substitution of these equations into the boundary and interfuce conditions ineqns (13) (15)
yiclds a system of 12 algebruic lincar equations for the unknown constants By, B+, ..., 8.
C,.....C,. Solution of this lincar equation system wis programmed for a computer.

| g

STRAIN-LOCALIZATION INSTABILITY

To check for stability, we may apply the procedure first used in Ref. (4] in [974 in an
analysis of the same problem tor a local medium. The system is stable if the work that must
be done on the system to produce any admissible kinematical variation of displacements is
positive. Thus, if this work is not done, no displacement variation occurs, i.¢. the system is
stable. However, if at least for one kinematically admissible displacement variation this
work 1s negative, the displacement variation will happen spontancously and energy will be
released. This is an unstable situation. The case when the work is zero 1s the critical state.

Onc type of incremental loading which obviously tends to induce strain localization is
to enforce displacement du at the interface x = A between the softening and loading
scgments, the end of the spring being held fixed (1, = 0). If the reaction U at x = A is
positive, the work AN = 30 du/2 is positive, and so the system is stable. Otherwise it is
unstable.

At the critical state du = 0, Le. the reaction variation is zero while the displacement
variations arc nonzero. These displacement variations are accompanied by a change of
stress S,(L) in the spring. Thus, the critical state is characterized by the possibility of a
change of the end reaction in the spring at no change of end displacement. This means that
on approach to instability the incremental stiffness for end loading of the system tends to
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infinity. or that the incremental compliance tends to zero. If the incremental compliance is
positive, the system is stable, and if it is negative. the system in unstable. This method of
detecting instability is used in our numerical calculations.

We assume that the broad range stress-strain diagram in Fig. 1(b) is given. which
means that the tangent modulus for loading. £,. is known as a function of strain £. Also
given is the unloading modulus £, as a function of & (Fig. 1{b)). The elastic modulus £ for
local behavior is specified. too, and so are the length L of the bar, the spring constant C.
and the material characteristic length 4.

At which value of strain £ does the system become unstable? This question may be
answered by the following numerical procedure in which stability is checked for a sequence
of increasing discrete values & (i = 1.2.3....) of initial strain £°, and for each & for a
sequence of increasing values i, (j = 1,2...., V) of segment /.

(1) Loop on initial strain values & of a uniform initial strain in the bar, increasing
from 0 to a certain specified maximum value (e.g. 5) €. where ¢, is the strain at peak stress.
(2) For the &', determine £, and E, as specified.

(1Y inwhich Si{(L)y= - 1.

{5) If 4, £ 0, go to step 7. Otherwise return to step 3 and repeat steps 3-5 for the next
h-value,

(6) No A-value gives a critical state for this &'-value. Return to step | and repeat steps
1-5 tor the next &'-value.

(7) Now u; < 0. So the critical value of & is between the last two valuces /. Interpolate,
using Newton iterations, to determine the critical # more accurately.

(8) Then repeat these iterations for various values of £ lying between the last two
discrete values of £, This involves repetition of steps 1-3 for intermediate discrete values
of & in order to determine the critical vitlue of & more accurately, along with the cor-
responding A.

Normally # < L, except for very small beam lengths. Then the smallest £° for which a
critical state exists is characterized by two simultancous conditions: (16" = 0 and
Quy(h N/ ch = 0 for S,(L) = — 1. The foregoing algorithm is onc way to solve these
conditions, but other numerical root search methods can be employed just as well. However,
ifu, = 0oceurs for i = L, which may happen for very small L, then the condition fu,y/dh = 0
need not apply.

The results of numerical calculations are plotted in Figs 2-5. Figure 2 shows an
example of the dependence of the length of the strain-softening scgment, 24, on the length
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Fig. 2. Dependence of fength # of strain-softening segment (left scale) and of dissipated energy Wy
(right scale) on length L.
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of the bar, normalized with regard to the characteristic length / (/7 = 244°). The spring is
considered infinitely stiff, the ratio of the loading and unloading non-local moduli is
L,/E, = —0.2, the local elastic modulus is £ = 0.2F,, and the non-local participation factor
is ¢ = 0.25. We sce that the length of the localization segment is not constant, but it may
be considered as approximately constant, in this case 2/ = 1.2/, This agrees with the
assumption made in the crack band model, cyn (6).

Figure 2 also shows how the energy, B, dissipated in the strain-softening zone depends
on the relative length of the beam, for which C — 0. The density of W, (i.c. energy dissipated
per unit length of the bar) is defined by the cross-hatched area in the broad-range stress-
strain diagram in Fig. 1(b) (the reason that this represents the dissipated energy, or the
fracture energy, is given in Ref, [6] or Ref. [2]). W is normalized with respect to the elastic
energy 28 7/2E,. Note that, except for some initial Huctuation, the dissipated energy, which
is essentially equivalent to the fracture energy. is approximately independent of the refative
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Fig. 4. States of strain localization on instability for non-local theory and for local theory with
length o4 of strain-localization scgment.
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Fig. 5. Strain &, at strain-localization instability (ductility) as a function of bar length L for various
spring constants C and various shapes of stress -straun diagram (mo= 2 leftom = 3 right).

beam size, L/1. This again agrees with the assumptions made in the approximate blunt crack
band model[2].

Figure 3(top) shows the effect of the ratio of the loading and unloading moduli £, E,
on the relative length of the strain-softening segment, 24/1, for the case of a relatively long
bar, Lih = 20 (other propertics being the same as before). In this diagram, the variation of
the length of the strain-softening segment is somewhat more pronounced ; 24/1 varies from
0.8 to 1.2, Note that in aumerical calculations one must be careful to distinguish the first
instability mode (solid curve in Fig. 3) from the sccond higher instability mode (the dashed
curve in Fig. 3(top)). Only the first instability mode can occur in practice.

Figure 4 shows the stability limits in terms of spring constant €, normalized with
regard to the unloading bar stiffness AE,/L and plotted vs the ratio of loading to unloading
moduli, - E,/E,.

Figures 5(a) and (b) show the ductility of the bar as a function of the relutive bar
length, L/1, for various values of spring constant C relative to the bar stitiness. The ductility
is defined as the initial uniform strain in the bar at the onset of instability, g, and its plot
is normalized with regard to the strain ¢, at peak stress. The stress -strain diagram used in
this calculation is given in Fig. 5(¢). in which the formulu is also written. The results are
plotted for two values of s from this formula, corresponding to the typical post-peak
response of low strength concrete (m = 2) and medium strength concerete (m = 3). The
unloading modulus £, is. in these calculations, assumed to be equal to the initial elastic
modulus £, i.e. £, is constant. This is done in order to make possible a comparison of the
results with a previous solution based on the local crack band model[5] ; these calculations
were also made for £, = F = const. although it might have been more realistic to consider
E, to be u function of &, such that £, is between the secant modulus and the initial elastic
modulus.

The diagrams in Figs S(a) and (b) are plotted for various vilues of the spring constant
C relative 1o the bar stiffness £, 47 L. We sce that ductility gencerally decreases as the length
of the bar increases, or as the spring stiffness decreases. These trends are well known from
cxperiments,

The results previously obtained with the local solution based on the crack band modcl
are shown for comparison as the dashed lines in Figs 4 and 5. The dashed lines in Fig. 3
were reported in previous work([4]. in which it was shown that. in the focal approach, the
length of the strain-softening segment, i, must be considered to be a materiad property and,
especially, must not be allowed to be arbitrarily small {this conclusion then led to the crack
band theory in Refs [1, 5-7] for local linite clement analysis of distributed cracking).

Although the length &t = w, of the strain-softening segment in the local solution plays
the same role as the characteristic length / or 4 in the present non-local solution, there is
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no reason why these two quantities should be exactly equal. Therefore, the length of the
strain-softening segment (localization segment) in the local solution was considered as
w, = [/x where [ is the characteristic length in the present non-local theory (/7 = 24,7).

Similarly, the ductility values. i.e. the values of the strain £ at the onset of instability.
do not have the sume meanings in the local and non-local approuaches. and so the strain at
instability for the local solution was considered as fe,. The values of x and § were then
varied so as to minimize the difference between the non-local and local solutions (in the
least-square sense). Such best agreement is obtained for the present example when 2 = 1.5
and f = 1.045 for m = 2 or f = 1.025 for m = 3 (Figs 5(a) and (b)). It is now worth noting
that the differences between the local and non-local solutions in Figs 4 and 5(a) and (b) are
indeed quite small. and that the optimum values of x and f§ are not very different from 1.
We may thus conclude that the local solution, in which the length of the strain-softening
segment (localization segment) is considered to be a material property (as is done in the
blunt crack band theory), yields approximately correct results. A caveat must be added,
though ; this need not hold true for general three-dimensional solutions, in which boundary
constraints or reinforcement might enforce the strain-softening region to be much larger
than the characteristic length.

IMBRICATE NON-LOCAL BENDING THEORY

Another problem which is one-dimenstonal and castly amenable to an analytical
solution is the non-local solution for bending. We consider a beam with a constant sym-
metric cross sectional arca A and centroidal moment of inertia 7 (Fig. 1(g)). v,z are the
axial and transverse coordinates and w the transverse deflection. We adopt the Bernoulli
Navier hypothesis that plane cross scctions remain planc and normal to the deflection line
and that transverse normal stresses are negligible, The deflections are assumed to be small.
Introducing the relations &(v) = _f:z(.s~)1:(.\‘+.\‘) ds. o0 = E5, 1 = Ee, ¢ = xz, and £ = Rz, into
the integrals A = {az doA, m = [z dA. over the cross sectional arca A, and defining the
non-local and loca! bending moments, we obtain the relations

12
m=Rx, M=R: nr=w" R = J a(s)k(x+s) ds (20)

-t

where R = EI, R = E1, 1 = [z dA; £ is the non-local curvature, / the characteristic length
of the non-local medium and x(s) the given weighting function, same as in egns (1).

As a particularly simple strain-softening problem, we will analyze curvature local-
ization in a simply supported beam shown in Fig. 1(g). Due to symmetry, the problem Is
equivalent to a cantilever beam of length L. loaded by a transverse distributed load ¢ and
at the end by a transverse concentrated load £. For the purpose ol analytical solution, we
again replace the integral averaging operator in egns (20) by a differential operator, which
is obtained by expanding k(v +s) into a Taylor serics about point x. After truncation of
higher-order terms, we thus obtain the approximation

7= n"+ 100wt (2h

We expect strain softening to occur within a symmetrically located segment of length 24
(Fig. 1(g)).
The virtual work expression for the bar may be written as

I

. :
W = J‘ [t =) M (3w + 220wt ) 4 o Sn'| — gow ) d.\'+J [(1 = )M (Snws + 270wlY)
[} i

g

Fenndwy —gow.] dv— MO (L) — Pow-(L) =0 (22)
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Fig. 6. Curves of deflection for various beam softening stitfnesses R,.

which is similar to eqn (2) (27 = [7/24): ¢ is the transverse distributed load. Subscripts |
and 2 are aftixed to distinguish between the segments of length rand L—# (Fig. 6(b)).
The virtual work expression for the cantilever beam may be written as

W = f} [t —e)adi+ croe] daot dx «jydn‘ Ay — AW (L) — Pow(L).

Substituting the previous expressions for ¢ and £, and splitting the integrals over segments
of lengths irand L—h (Fig. 6). we may rewrite this expression as

SW = [(1=c)yM ((Ow + 4200wT) +emowi o= [(L = )M (dw, + A7) +ent ow, |h
#
+J‘ (=) M (w2700 + o] w ) —gdw, ] d
i}

F (1 =MW+ 223w ) + emydws ] —[(F =) M (0w, + A20ws) + emhow, )k

L
+-‘. (1 =) MA0ws + 270ws) + em3dw,] dx— Mowy (L) — Pdw,(L) = 0. (23)
h

By two subscquent integrations by parts. eqn {22} may be transformed to
S = [M 0w 5=V 0w 1o+ (1 = )22 [ M dwy — M St

i
+J‘ (M} = g)ow| dx+[M0ws]E = [Ma0w,]h + (L =) AT [Mdwy — M yows))

)

L
+J‘ (M5~ dwy dx— MWy (L)~ Pow,(LYy =0 (24)
h

with the notations
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M, o=l =c) (M, +2 M) +emy. My= (=) (M. +2" M%) +cm.. (25)
The condition that eqn (24) must be satisfied for any kinematically admissible variation
ow(x) yvields:
the following differential equations of equilibrium

M, =q. Mi=yq: (26)

the boundary conditions of symmetry at x =0

Moow, =0, Mow, =0, MowT =0, M dnwi=0: (R2))

the intertace conditions at x =/
AL Sw = MLowh =0, Mydw, —MWow, =0, M owy —Mon% =0,
Miowy —M50w, =0; (28)

the end boundary conditions at x = L

(M. —AM)ow, =0, (M.=P)dw, =0, M.w7? =0, M =0. (29)

From cgns (26) it is clear that M, and M, represent the total bending moments in the cross
sections of the beam,

According to the particular kinematic conditions of our example (Fig. I(g)), the
boundary and interface conditions from ¢qns (27)-(29) reduce to:

forv =0
w,=0, wi=0, wi'=0, M, =0rw]=0); 30
forx =1
W=, Wy o= wh, W= wh, Wy = wy
M, =M, My=M, M =M, M, =M, (3N
torv =L
wi=0, wV¥=0 M,=M, M,=P (32)

In view of eqn (21), the condition M7 = 0 at x = 0 is equivalent to w) = 0, as stated.

We now consider that the beam is initially in a stress state which involves strain
softening within the central segment of length i, We are interested in the stability of this
initial state and analyze, therefore, additional deformation increments. Thus, w(x) and
wo(v) represent small deflection increments from the initial state, and we assume ¢ = 0.

To make an analytical solution feasible, we must assume that the bending rigiditics R,
and R, in segments /o and L —/r are constant. This would not be possible if the properties
of the beam were defined by stress strain relations, beciause, in contrast to our previous
analysis of the bar, the inittal distribution of the bending moment is not uniform (Fig.
1{h)). Therefore, we assume that the beam properties are characterized by local and non-
local moment curvature relations which exhibit strain softening. Even though the initial
bending moment is nonuniform over the beam, we assume that the incremental bending
rigiditics R, and R, for further loading and for unloading are constant within the range of
initial bending moments in the segments /it and L—h (Fig. 1(i)).

Strain softening may be exhibited only by the non-local moment curvature relation
between M and £, The local moment curvature relation between m and v (Fig. 1())) is
assumed to be clastic, with bending rigidity R. Substituting M, = R/, M, = R,
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m, = Rw], m. = Rw"into eqns (25) and then into eqns (26). we obtain the basic differential
equations of the problem

M7= 1=0)R(w;+225wl¥ +i5% ) +cRw)Y = ¢
M= (=R, + 225wV + 25 +eRu = ¢ {33)

The present problem is mathematically equivalent to the previous problem of axial
deformation. Indeed. if we replace w” by u. eqns (33) become identical to eqns {9). Thus.
the general analytical solution is of the same form, except that two more integrations must
be carried out to obtain w from w”. The general solution of the differential equations in
eqns (33) for the softening segment of length 4 and the non-softening segment of length
L—his

wi(xX) = B, sin 2,x+ B sin f,x+ 8, sin x,x+ B, cos Bix+B.x'+B:x+8, (34

wa(x) = C, cosh x,x sin ff,v+ C, sinh 2,x cos f.x+ C, cosh 2,x cos f,x

+Cysinh %1 sin v+ Cox +Cox +Con+ Gy (39)
in which

=4 (I+AD =i (=AD" A = (R [-(1=0R] " (36)

3

=4 Hd,=D" fr=4 WA+ HYL A=+ AD] . Ay =cR[(I-R] .

(37

This solution involves 16 unknown constants, for which the boundary conditions and the
interface conditions in eyns (30)-(32) yield 16 lincar algebraic equations.

CURVATURE LOCALIZATION INSTABILITY AND NUMERICAL RESULTS

Based on the foregoing formulation, we may now study the conditions under which
strain-softening behavior in a beam becomes unstable, Similar to our previous procedure
for axial deformations in a bar, we consider that an incremental load is applied at the
cantilever end (Fig. 1(g)), cither P = — 1 or M/ = —|. Then we scan the range of values of
[RI/R, and A/ L. We choose a serics of discrete values of these variables, solve the problem
for cach combination and calculate for the beam end the displacement w. (L), where an end
load is considered. or w’ (L) when an end moment is considered. If this value is positive,
the beam is stable, and if it is negative, the beam is unstable. The smallest value of |R,| R,
for which this happens for some value of /4 is the critical state.

The numerical results are shown in Figs 6 and 7 and the bottom of Fig. 3. Figure
3(bottom) shows the length of the curvature localization zone A as a function of the softening
bending rigidity. The steeper the softening slope, the longer is the strain-softening segment.
For steep softening slopes, the ratio 24! seems to be almost constant and equal to 0.8,
Figure 6 shows the deflection curves of the cantilever beam for the applied moment at the
end (M = —1). The deflection curves are plotted in Fig. 6 for three stiffness ratios. Note
that a steeper softening slope causes an increase of the deflection. The distributions of the
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Fig. 7. Distributions of broad-range bending moment M and shear foree 1 for vanious softening
stiffiesses and load cases.

ratto of the broad-runge moment M to the total moment M (Fig. 7(left)) indicate that the
deviation from the tocal solution (horizontal dashed lines) increases significantly with the
softening slope R,

The same cantilever beam was subjected at the tree end to the transverse foree PP = — |
(Fig. 7(right)). In this case once finds that the plot of the softening zone length r vs R /R,
is almost wdentical with the previously obtained plot tor M = -1 (Fig. 3(bottom)). The

diagrams of deflection wil within the short softening segment are also nearly identical.
tigure 7 shows the distributions of broad-riange bending moment A and broad-range shear
force 1. Note that tor a very small softening slope, R,/R, = —0.001, the distribution of M
and especially I significantly deviate from the local solution (dashed lines) for small x, but
for larger v gradually converge to them.

CONCLUSIONS

(1) The differential approximation of imbricate non-local continuum permits modeling
strain-softening regions in bars and beams which are of a finite length, and it makes possible
an exact analytical solution.

(2) The essential and natural boundary conditions itre derived by i consistent variational
procedure from the principle of virtual work.

(3) Similar to previous work[4]. the failure due to strain softening is treated as a
stability problem of a continuous structure.

(4) The previously published solution based on a local continuum concept and a size
limitation on the strain-localization zone yiclds approximately the sume results as the
present exact solution. This lends further justification to the blunt crack band model for
distributed cracking.

(3) In the present formulation, the length of the softening segment is not specified in
advance but is unknown: it may be determined by stability analysis. This length appears
to be approximately constant over a broad range of conditions and approximately the same
as the width of the strain-softening region (cracking zone) in the aforementioned previous
local approach. The energy dissipated due to strain softening seems to be also almost the
same for these two approaches.
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